An Analysis of Zero Set and Global Error Bound Properties of a Piecewise Affine Function via Its Recession Function
نویسنده
چکیده
occasion of his 60th birthday. Abstract For a piecewise aane function f : R n ! R m , the recession function is deened by f 1 (x) := lim !1 f(x) : In this paper, we study the zero set and error bound properties of f via f 1. We show, for example, that f has a zero when f 1 has a unique zero (at the origin) with a nonvanishing index. We also characterize the global error bound property of a piecewise aane function in terms of the recession cones of the zero sets of the function and its recession function.
منابع مشابه
Characterizing Global Minimizers of the Difference of Two Positive Valued Affine Increasing and Co-radiant Functions
Many optimization problems can be reduced to a problem with an increasing and co-radiant objective function by a suitable transformation of variables. Functions, which are increasing and co-radiant, have found many applications in microeconomic analysis. In this paper, the abstract convexity of positive valued affine increasing and co-radiant (ICR) functions are discussed. Moreover, the ...
متن کاملEnlarging Domain of Attraction for a Special Class of Continuous-time Quadratic Lyapunov Function Piecewise Affine Systems based on Discontinuous Piecewise
This paper presents a new approach to estimate and to enlarge the domain of attraction for a planar continuous-time piecewise affine system. Various continuous Lyapunov functions have been proposed to estimate and to enlarge the system’s domain of attraction. In the proposed method with a new vision and with the aids of a discontinuous piecewise quadratic Lyapunov function, the domain of attrac...
متن کاملGlobal error bounds for piecewise convex polynomials
In this paper, by examining the recession properties of convex polynomials, we provide a necessary and sufficient condition for a piecewise convex polynomial to have a Hölder-type global error bound with an explicit Hölder exponent. Our result extends the corresponding results of [25] from piecewise convex quadratic functions to piecewise convex polynomials.
متن کاملHybrid model predictive control of a nonlinear three-tank system based on the proposed compact form of piecewise affine model
In this paper, a predictive control based on the proposed hybrid model is designed to control the fluid height in a three-tank system with nonlinear dynamics whose operating mode depends on the instantaneous amount of system states. The use of nonlinear hybrid model in predictive control leads to a problem of mixed integer nonlinear programming (MINLP) which is very complex and time consuming t...
متن کاملSolving Fully Fuzzy Linear Programming Problems with Zero-One Variables by Ranking Function
Jahanshahloo has suggested a method for the solving linear programming problems with zero-one variables. In this paper we formulate fully fuzzy linear programming problems with zero-one variables and a method for solving these problems is presented using the ranking function and also the branch and bound method along with an example is presented.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 17 شماره
صفحات -
تاریخ انتشار 1996